

	Licence Number			SKM 9	987/1								
Annex to Solar Keymark Certif	Date issued			2023-09-25									
· · · · · · · · · · · · · · · · · · ·	Issued			DQS H									
	GEORGE I. M	FLISSAR		05 -	135464	~ <u>,</u>		basn	ciius				
Licence holder				03-	Country	Greece							
	RISMA THERM	Web	eb http://www.primatherm.gr										
	ocation Laimov	E-mail											
	9300-Aspropyr	Tel	+30 210 5570250 / 210 5570257										
		0											
Collector Type					Flat plat	e collecto	r						
						Power output per collector							
	Gross area (A _G)	Gross length	Gross width		Gb = 850 W/m2, Gd = 150 W/m2 & u = 1.3 m/s								
Collector name	Gross area (/			Gross height			<u></u>	-					
		ি দু	<u>s</u> is	Gr he	ок	10 K	30 K	50 K	70 K	87 K			
	m²	mm	mm	mm	W	W	W	W	W	W			
PRISMA 200	1.90	1,960	970	80	1,228	1,161	1,002	812	590	376			
PRISMA 240	2.37	1,960	1,210	80	1,532	1,448	1,250	1,013	736	469			
PRISMA 280	2.37	1,210	1,960	80	1,532	1,448	1,250	1,013	736	469			
		+											
		<u> </u>											
Power output per m ² gross area					646	610	527	427	310	198			
Performance parameters test metho	d Steady	state - out	door										
Performance parameters (related to	A_G) η0, b	al	a2	a3	a4	a5	a6	a7	a8	Kd			
Units	-	W/(m²K)	$W/(m^2K^2)$	J/(m³K)	-	J/(m²K)	s/m	W/(m²K4)	W/(m²K⁴)	-			
Test results	0.665	3.33	0.021	0.000	0.00	12,130	0.000	0.00	0.0E+00	0.81			
Incidence angle modifier test metho	d	Steady s	tate - out	door									
Incidence angle modifier	Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°			
Transversal	K _{θT,coll}	1.00	0.98	0.96	0.91	0.84	0.73	0.57	0.34	0.00			
Longitudinal	K _{θL,coll}	1.00	0.98	0.96	0.91	0.84	0.73	0.57	0.34	0.00			
Heat transfer medium for testing						Water							
Flow rate for testing (per gross area, A _G)								0.020 kg/(sm ²)					
Maximum temperature difference d		dm/dt (ϑ _m -ϑ _a) _r	nax	57	К								
Standard stagnation temperature (G = 1000 W/m ² ; ϑ_a = 30 °C)						ϑ _{stg}		194.4	°C				
Maximum operating temperature						ϑ _{max_op}			°C				
Maximum operating pressure						p _{max,op} 1000 kPa							
Festing laboratory NCSR "DEMOKRITOS"							www.solar.demokritos.gr						
Test report(s) 4168 DE1						Dated	17/11/1						
	169 DE1							16/12/1					
	169 DQ1							12/01/1					
Comments of testing laboratory							Ver.	6.2 (13.01	2022)				
The data was obtained from the test DQ1 (Collector PRISMA 240).	nd 4169	d 4169 N.C.S.R. "D E M O K R I T O S" SOLAR ENERGY LABORATORY Tel: +210 6503815 - Fax: +210 6544582 P.O. BOX 60037, 15310 Ag. Paraskevi, Greece											
Central Offices: Kalavriton 2, 1	45 64 kifisia	thens To	1: +301 62	33493-4	Fax: +301	6233495	. http://	www.do	.gr. e-ma	il:			
		unens. Te	1. TOUL 02		rax: +501	0233495	, nttp://	www.dds	s.gr. e-ma	115			

Page 2/2

Annex to Solar Keymark Certifica		e Nun	iber		SKM 9	•						
Supplementary Information		Issued				2023-	09-25					
Gross Thermal Yield in kWh/collect	or at me	ean flui	id tem	peratur	e ϑ _m							
Standard Location		Athens			Davos			Stockholm		V	Vürzbur	g
Collector name ခြံ,		50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C
PRISMA 200		1,189	660	1,330	826	419	988	584	295	1,072	624	309
PRISMA 240	2,261		823	1,659	1,030	523	1,232	728	368	1,337	778	386
PRISMA 280	2,261	1,483	823	1,659	1,030	523	1,232	728	368	1,337	778	386
Gross Thermal Yield per m ² gross area	953	625	347	700	434	221	520	307	155	564	328	163
Annual efficiency, η _a	54%	35%	20%	43%	27%	14%	45%	26%	13%	45%	26%	13%
Fixed or tracking collector								inded to ne				
Annual irradiation on collector plane	17	65 kWh,	/m²	163	30 kWh,	/m²	1	166 kWh/m	/m² 1244 kW			′m²
Mean annual ambient air temperature	18.5°C				3.2°C			7.5°C	9.0°C			
Collector orientation or tracking mode	S	outh, 2	5°	S	outh, 30	С		South, 45°	South, 35°			
The collector is operated at constant ten performance is performed with the offic calculations is available at http://www.e	ial Solar	Keymarl	k spread	lsheet to								
	5111018/3			nal Infe	ormati	ion						
Collector heat transfer medium										Water-	Glycole	
The collector is deemed to be suitable fo	r roof int	tegratio	n							N	0	
The collector was tested successfully und	der the fo	ollowing	conditi	ons:								
Climate class (A+, A, B or C)										4	-	-
G (W/m ²) > 1000	9	, (°C) >			20			H _x (MJ/r	n²) >		60	00
Maximum tested positive load								A	1	400	Р	а
Maximum tested negative load									2400 Pa		а	
Hail resistance using steel ball (maximum	n drop he	eight)								2	n	
		- · · ·	ional c	ollecto	or attri	hute(s)					
Using external power source(s) for norm			No					r self-prote	ction			No
Co-generating thermal and electrical power	-		No	Façade	-			i sen prote	ction			No
		-	NO	Taçauc					T. a. a. la . a i			NU
Energy Labelling Info	-							ormative	1			2
	Referen	ce Area,	A _{sol} (m ²)			-	nation (Аре	erture A		m²)
PRISMA 200	1.90			9-V-1234S-A:7.2,1830-C:21,1050-D					1.65			
PRISMA 240		2.37			10-V-1234S-A:7.2,1830-C:21,1280-D				2.11			
PRISMA 280		2.37		10-\	/-12345	-A:7.2.8	30-C:21	2010-D		2.3	11	
		2.57				,,,c		,				
	3 - Refer	ence Ar	ea A _{sol}	Data re	quired	for CDR	(EU) No	812/2013	- Refere	nce Area	a A _{sol}	
Data required for CDR (EU) No 811/201		48%		Zero-lo	ss effici	ency (η ₀)		0.	65	-	
				- · ·	der coe	fficient ((a₁)		3.	33	W/(r	
	<u> </u>			First-or			1,					
Collector efficiency (n _{col}) Remark: Collector efficiency (ncol) is defined	-	-				oefficie)21	W/(n	n²K²)
Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defined as collector efficiency of the solar collector at	a tempe	rature di	fference	Second Inciden	-order d			50°)		021 83	W/(n	n²K²) -
Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defined as collector efficiency of the solar collector at between the solar collector and the surround	a temper ing air of	rature di 40 K and	fference a global	Second Inciden	-order o ce angle	e modifi	nt (a ₂) er IAM (50°) tion are relation	0.	83	-	-
Collector efficiency (n _{col}) Remark: Collector efficiency (ncol) is defined as collector efficiency of the solar collector at between the solar collector and the surround solar irradiance of 1000 W/m ² , expressed in 9	a temper ing air of 6 and rou	rature di 40 K and nded to t	fference a global	Second Inciden <i>Remark:</i>	-order o ce angle <i>The dat</i>	e modifi a given ir	nt (a ₂) er IAM (n this sect		0. ed to coll	<mark>83</mark> lector refe	- erence ar	- rea
Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defined as collector efficiency of the solar collector at between the solar collector and the surround	a temper ing air of 6 and rou η ηcol is b	rature di 40 K and nded to t ased on	fference a global he:	Second Inciden Remark: (A _{sol}) wi for ISO 9	-order o ce angle The date hich is ap 9806. Cor	e modifi a given ir perture a nsistent a	nt (a ₂) er IAM (n this sector rea for vo lata sets j	tion are relate	0. ed to coll ng to EN . erture or	83 lector refe 12975-2 gross are	erence ar or gross a can be	- rea area