

Page 1/2 Licence Number **SKM 10045 Annex to Solar Keymark Certificate** Date issued 2022-07-27 Issued by **DQS Hellas PAPAEMMANOUEL S.A.** Licence holder Country Greece **Brand** (optional) Web www.papaemmanouel.gr Street, Number 10 Km Inofyta – St. Thomas, Inofyta Viotia E-mail exports@papaemmanouel.gr +30 22620 31931 Postcode, City 32011, Viotia Tel Collector Type Flat plate collector Power output per collector Gb = 850 W/m2, Gd = 150 W/m2 & u = 1.3 m/sarea (A_G) length Gross width Gross height $\vartheta_m - \vartheta_a$ **Collector name** 10 K 30 K 50 K 70 K 84 K m² mm mm W W w w w W mm FOXAL 20-2019 2.01 1,984 1,014 1,274 1,203 1,028 808 544 339 71 Power output per m² gross area 634 599 511 402 271 169 Steady state - outdoor Performance parameters test method Performance parameters (related to A_G) η0, b a1 a2 а3 a5 a6 а7 a8 Κd Units $W/(m^2K)$ $W/(m^2K^2)$ $J/(m^3K)$ $J/(m^2K)$ s/m $W/(m^2K^4)$ $W/(m^2K^4)$ Test results 0.644 0.000 0.00 10901 0.000 0.0E+00 0.89 3.26 0.028 0.00 Incidence angle modifier test method Steady state - outdoor Incidence angle modifier Angle 10° 20° 30° 40° 50° 60° 70° 80° 90° Transversal $K_{\theta T,coll}$ 1.00 0.99 0.96 0.92 0.85 0.75 0.59 0.36 0.00 0.99 0.96 0.92 0.85 0.59 Longitudinal 1.00 0.75 0.36 0.00 $K_{\theta L,coll}$ Water Heat transfer medium for testing Flow rate for testing (per gross area, A_G) dm/dt 0.021 kg/(sm²) Maximum temperature difference during thermal performance test $(\vartheta_{\mathsf{m}} - \vartheta_{\mathsf{a}})_{\mathsf{max}}$ 53.6 Standard stagnation temperature (G = 1000 W/m²; ϑ_a = 30 °C) $\vartheta_{ ext{stg}}$ 139 °C $\vartheta_{ ext{max_op}}$ Maximum operating temperature 160 °C Maximum operating pressure kPa $p_{max,op}$ 1000 Testing laboratory NCSR Demokritos / Solar & other Energy System www.solar.demokritos.gr Test report(s) 4249 DE1 Dated 12/06/19 4250 DQ1 01/08/19 Comments of testing laboratory Ver. 6.2 (13.01.2022) N.C.S.R. "DEMOKRITOS". SOLAR ENERGY LABORATORY Tel: +210 6503815 - Fax: +210 6544592 P.O. BOX 60037, 15310 Ag. Paraskevi, Graece

Central Offices: Kalavriton 4, 145 64 kifisia, Athens, Tel: +30 210 6233493-4, Fax: +30 210 6233495, http://www.dqs.gr, e-mail: i.alexiou@dqs.gr

Annex to Solar Keymark Certific	Licence Number Issued					SKM 10045							
Supplementary Information							2022-07-27						
Gross Thermal Yield in kWh/collect	or at m	ean flu	id tem	peratu	re ປີ								
Standard Locations	Athens Dav						S	ockhol	m Würzburg				
Collector name ปีก	25°C	50°C	75°C	25°C 50°C	50°C	75°C	25°C	50°C 75°C		25°C 50°C 75°C			
FOXAL 20-2019	1,946	1,263	658	1,419	847	385	1,059	606	278	1,156	653	295	
Gross Thermal Yield per m² gross area	968	628	327	706	421	192	527	302	138	575	325	147	
Annual efficiency, η _a	55%	36%	19%	43%	26%	12%	45%	26%	12%	46%	26%	12%	
Fixed or tracking collector Annual irradiation on collector plane	176	55 k\\/h		ed (slope = latitude - 15°; rounded t 1630 kWh/m ² 1166 kW									
Mean annual ambient air temperature	1765 kWh/m² 18.5°C			10.	3.2°C			1166 kWh/m² 7.5°C			9.0°C		
Collector orientation or tracking mode	South, 25°			S	South, 30°			South, 45°			South, 35°		
The collector is operated at constant te													
collector performance is performed wit													
description of the calculations is availab											,		
<u> </u>				al Infor									
Collector heat transfer medium		Auc	itionic		matio	'11				Water-	Glycolo		
The collector is deemed to be suitable f	or roof i	ntegrat	ion							Nater	•		
		съ. ис							l				
The collector was tested successfully ur	der the	followin	ng cond	litions:									
Climate class (A+, A, B or C)										A	-	-	
$G(W/m^2) > 1000$	θ_{a} (°C) >			20				H _X (MJ	I/m²) >	600			
Maximum tested positive load										3000 Pa			
Maximum tested negative load										000		a	
Hail resistance using steel ball (maximu					-44! -					2	r	n	
Using external power source(s) for norn				lector			curo(c) f	or colf	nrotoct	ion		No	
Co-generating thermal and electrical po		ation	No No	+	collect		sure(s) f	or seii-	protect	1011		No No	
		<u> </u>	INU	i açauc			Linfor	mativ	o Toch	nical F)ata	INU	
Energy Labelling Information				Additional Informative								/ ² \	
FOXAL 20-2019	Reference Area, A _{sol} (m²) 2.01			Hydraulic Designation Code 8-V-1234S-A:11,1880-C:20.6,108					Aperture Area, A _a (m ²) D 1.88				
FOXAL 20-2019		2.01		0-V-12.	J+J-A.1	1,1000	C.20.0,	1000-D		1.0	50		
_													
Data required for CDR (EU) No 811/20:	13 - Refe	erence A	\rea	Data re	quired	for CDI	R (EU) N	o 812/2	2013 - R	Referenc	e Area	A_{sol}	
Collector efficiency (η _{col})		46%				ency (η				63	-	-	
						efficient				26	W/(ı		
Remark: Collector efficiency (ncol) is defined			orations			coeffici				028	W/(r	n²K²)	
811/2013 as collector efficiency of the solar collector at a temperature difference between the solar collector and the surrounding air of 40 K					incluence angle modifier iAW (50)							-	
and a global solar irradiance of 1000 W/m², expressed in % and					Remark: The data given in this section are related to collector reference								
rounded to the nearest integer. Deviating from the regulation ηcol is					area (A _{sol}) which is aperture area for values according to EN 12975-2 <u>or</u> gross area for ISO 9806. Consistent data sets for either aperture or gross								
based on reference area (Asol) which is aperture area for values					area can be used in calculations like in the regulation 811 and 812 and								
according to EN 12975-2 or gross area for ISC	9806:20	17.			on progr				-				
	kifisia <i>l</i>												