

Page 1/2

wal EAC ss up w mm 1,030 1,030 1,283	08 08 height	Web E-mail Tel Flat plat	BULGARI http://nc info@no +359 e collecto Powe 850 W/m	bel.bg bel.bg 2 42102 r er outpu 2, Gd = 1	t per colle	ellas						
mm 1,030 1,030	08 08 height	Issued Country Web E-mail Tel Flat plat Gb =	BULGARI http://nc info@no +359 e collecto Powe 850 W/m	bel.bg bel.bg 2 42102 r er outpu 2, Gd = 1	DQS Ho	ellas						
mm 1,030 1,030	08 08 height	Country Web E-mail Tel Flat plat Gb =	BULGARI http://nc info@no +359 e collecto Powe 850 W/m	bel.bg bel.bg 2 42102 r er outpu 2, Gd = 1	32 t per colle							
mm 1,030 1,030	08 08 height	Web E-mail Tel Flat plat Gb =	http://nd info@no +359 e collecto Powe 850 W/m	bel.bg bel.bg 2 42102 r er outpu 2, Gd = 1	t per colle							
mm 1,030 1,030	mm 80 80	E-mail Tel Flat plat Gb =	e collecto Powe 850 W/m	bel.bg 2 42102 r er outpu 2, Gd = 1	t per colle							
mm 1,030 1,030	mm 80 80	Flat plat Gb =	+359 e collecto Powe 850 W/m	2 42102 r er outpu 2, Gd = 1	t per colle							
mm 1,030 1,030	mm 80 80	Flat plat Gb =	e collecto Powe 850 W/m	r er outpu 2, Gd = 1	t per colle							
mm 1,030 1,030	mm 80 80	Gb =	Pow 850 W/m	e r outpu 2, Gd = 1								
mm 1,030 1,030	mm 80 80	0 K	850 W/m	2, Gd = 1								
mm 1,030 1,030	mm 80 80	0 K	850 W/m	2, Gd = 1		Power output per collector						
mm 1,030 1,030	mm 80 80	0 K			Gb = 850 W/m2, Gd = 150 W/m2 & u = 1.3 m							
mm 1,030 1,030	mm 80 80			$\vartheta_{\rm m} - \vartheta_{\rm a}$								
mm 1,030 1,030	mm 80 80		10 K	30 K	50 K	70 K	94 K					
1,030 1,030	80 80		W	W	w	W	W					
1,030	80	802	743	619	488	350	175					
		1,076	997	832	656	470	235					
2,230	80	1,357	1,257	1,048	827	593	296					
		_,	-,									
		573	530	442	349	250	125					
ıtdoor												
a2	a3	a4	a5	a6	a7	a8	Kd					
		-										
0.007	0.000	0.00		0.000	0.00	0.0E+00	0.79					
state - out	door											
_		1 400	I ∈o∘ I	60°	70°	00° I	90°					
+		_			_	_						
_							0.00					
0.38	0.35	0.90		0.71	0.55	0.55	0.00					
						I 2						
Flow rate for testing (per gross area, A _G)												
Maximum temperature difference during thermal performance test												
Standard stagnation temperature (G = 1000 W/m ² ; ϑ_a = 30 °C) Maximum operating temperature												
			U _{max_op}									
						кча						
				ar.demo								
Test report(s) 4080DE2 4082DE2 4086DQ2, 4213DQ1												
							110					
					•		ΤQ					
			1	Ver.	6.2 (13.01.	2022)						
					N.C.S.R. "D E M O K R I T O S" SOLAR ENERGY LABORATORY Tel: +210 6503815 - Fax: +210 6544592 P.O. BOX 60037, 15310 Ag. Paraskevi, Graece							
	w/(m²K²) 0.007 state - out 20° 0.98 0.98 ance test	a2 a3 (i) W/(m²K²) J/(m³K) 0.007 0.000 state - outdoor 20° 30° 0.98 0.95 0.98 0.95 ance test	a2 a3 a4 a3 a4 a3 a4 a4 a5 a5 a5 a5 a5 a5	A	A	A	A					

Central Offices: Kalavriton 4, 145 64 kifisia, Athens, Tel: +30 210 6233493-4, Fax: +30 210 6233495, http://www.dqs.gr, e-mail: i.alexiou@dqs.gr

Annex to Solar Keymark Certific	Licence Number					Page 2/2 SKM 9965/9							
Supplementary Information			Issue	d	2022-08-30								
	or at m	soon flu	id tom	norati	ro 9		-						
Gross Thermal Yield in kWh/collect Standard Locations		Athens		peratu			C+	tockhol	<u></u>		Viirzbu		
Standard Locations Collector name	25°C	50°C	75°C	25°C	Davos 5°C 50°C	75°C	25°C	tockholm 50°C 75°C		Würzbu		75°C	
AELIOS AIB 1500	1,152	678	353	794	458	226	597	322	156	650	343	164	
AELIOS AIB 2000	1,547	911	474	1,066	615	303	801	433	209	873	460	220	
AELIOS AIB 2600	1,951		598	1,344	776	382	1,010	546	263	1,101	580	278	
	ļ												
_	<u> </u>												
	ļ			<u> </u>									
	<u> </u>												
	<u> </u>			 									
Gross Thermal Yield per m ² gross area	823	485	252	567	327	161	426	230	111	465	245	117	
Annual efficiency, η _a	47%	27%	14%	35%	20%	10%	37%	20%	10%	37%	20%	9%	
Fixed or tracking collector	47						5°; roun					, ,	
Annual irradiation on collector plane	1765 kWh/m²			16.	30 kWh,	/m ⁻	11t	66 kWh 7.5°C	/m²	1244 kWh/m² 9.0°C			
Mean annual ambient air temperature Collector orientation or tracking mode	18.5°C South, 25°			<u> </u>	3.2°C South, 30°			7.5 C South, 45°			South, 35°		
The collector is operated at constant te													
collector performance is performed wit													
description of the calculations is available									0.2 ,	02.2.2			
F					matio		'						
Collector heat transfer medium		Aut	litioni	11 11110	Illatio	'11			<u> </u>	Water-	Glycole		
The collector is deemed to be suitable for roof integration											lo		
The concetor is deciment to the same	01.102.									*			
The collector was tested successfully un	der the	followi	ng cond	litions:									
Climate class (A+, A, B or C)										Д		-	
G (W/m ²) > 1000	θ	_a (°C) >			20			H _X (M.	l/m²) >			00	
Maximum tested positive load										000		a	
Maximum tested negative load	la a a	·								000		'a	
Hail resistance using steel ball (maximus		height) dditior	- al co	loctor	attrib	··+a/c\				2	ı	n	
Using external power source(s) for norn			No	-			sure(s) f	or self-	nrotecti	ion		No	
Co-generating thermal and electrical po		ation	No		collect		Sui e(3) i	OI SCII	ρισιές	1011		No	
Energy Labelling Infor		n	110	Iuyuu			l Infor	mativ	- Tech	nical E)ata	110	
Lifetay Luxelling i		nce Area,	^ (m²)	Hv							(m²)		
AELIOS AIB 1500	NEIGIGI	1.40	A _{sol} (III ,	Hydraulic Designation Code 8-V-1234S-A:8,1342-C:20,1060-D					Aperture Area, A _a (m²) 1.40				
AELIOS AIB 2000	<u> </u>	1.88			8-V-1234S-A:8,1842-C:20,1060-D					1.88			
AELIOS AIB 2600				11-V-1234S-A:8,1842-C:20,1320-D					2.37				
AELIOS AIB 2000		2.37		11-V-12343-A.8,1842-C.20,1				320-D		Ζ.:	37		
Data required for CDR (EU) No 811/201	13 - Ref		Area					o 812/2		eferenc	e Area	A _{sol}	
Collector efficiency (η _{col})		40%			ss effici					57	14///	21/1	
Remark: Collector efficiency (ηcol) is defined	in CDR (FII) No			rder coe					14	W/(ı		
811/2013 as collector efficiency of the solar c			erature		d-order		ier IAM	/EO°\		007 80	W/(r	n-K-)	
difference between the solar collector and th											or referei	nce	
and a global solar irradiance of 1000 W/m², e	xpressed	l in % and	t	Remark: The data given in this section are related t area (A sol) which is aperture area for values accord							-		
rounded to the nearest integer. Deviating fro		-		is gross area for ISO 9806. Consistent data sets for either aperture or gr									
based on reference area (Asol) which is aperture area for values according to EN 12975-2 or gross area for ISO 9806:2017.					area can be used in calculations like in the regulation 811 and 812 and								
	2000.20			simulati	ion progr	ams.							
Control Offices Valouriton 4, 145 64	1		- 1		222422		. 20 24			-,,			