

Page 1/2

	Licence	e Numb	er	SKM 10093.2									
Annex to Solar Keymark Certificate							sued		2020-09-10				
,						Issued	hv		DQS Hellas				
									DQJ Hellas				
Brand (optional)							ntry Greece www.calpak.gr						
Street, Number	9, Sygrou	Λνο				Web E-mail	export@calpak.gr						
Postcode, City	11743, 'A					Tel	30 2109247250 / 2109231616						
r ostcode, city	11745, A	tilelis				l i e i	30	210324	7230 / 21	03231010			
Collector Type						Flat plat	e collecto	r					
	T		l			Power output per collector							
		₽ G)	Gross length	Gross width	Gross height	Gb = 850 W/m2, Gd = 150 W/m2 & u = 1.3 m/s							
Collector name		Gross area (A _G)				ϑ_{m} - ϑ_{a}							
		Grc are	g e	Ĭ, Ķ	Grc hei	0 K	10 K	30 K	50 K	70 K	85 K		
		m²	mm	mm	mm	w	W	W	w	w	W		
PRISMA 2.0		2.01	1,625	1,235	85	1,524	1,459	1,296	1,090	841	624		
PRISMA 2.5		2.50	2,020	1,235	85	1,905	1,823	1,620	1,363	1,052	780		
									ļ				
									1				
									1				
						<u> </u>							
Power output per m ² gross area	<u> </u>		·			762	729	648	545	421	312		
Performance parameters test met	hod S	teady s	tate - out	tdoor									
Performance parameters (related		η0, b	a1	a2	a3	a4	a5	a6	a7	a8	Kd		
Units	G,	-		W/(m²K²)	J/(m³K)		J/(m²K)	s/m			-		
Test results		0.777	2.99	0.027	0.000	0.00	0	0.000	0.00	0.0E+00	0.87		
Incidence angle modifier test meth				tate - out		0.00		3.555	5.55	0.02.00	0.07		
		nala	10°	20°	30°	40°	50°	60°	70°	80°	90°		
Incidence angle modifier Transversal		ngle				_							
	I K	θT,coll	1.00	1.00	0.98	0.96	0.91 0.91	0.82	0.68	0.43 0.43	0.00		
Longitudinal	IN	θL,coll	1.00	1.00	0.98	0.96		0.82	0.08	0.43	0.00		
Heat transfer medium for testing							Water						
Flow rate for testing (per gross area, A _G)							dm/dt			0.020 kg/(sm²)			
Maximum temperature difference during thermal performance test							$(\vartheta_{\rm m} - \vartheta_{\rm a})_{\rm n}$	nax	55.14 K				
Standard stagnation temperature (G = 1000 W/m ² ; ϑ_a = 30 °C)							$\vartheta_{\sf stg}$		180	°C			
Maximum operating temperature							ϑ_{max_op} -			°C			
Maximum operating pressure							p _{max,op} 1000 kPa						
Testing laboratory								www.solar.demokritos.gr					
Test report(s)	4272 DE1						Dated			20/07/20			
	4273 DE1									20/07/20			
4274 DQ1							06/08/20						
Comments of testing laboratory							Da	atasheet v	ersion: 6.1	l , 2019-09 -:	26		
·							N.C.S.R. "D E M O K R I T O S" SOLAR ENERGY LABORATORY Tel: +210 6503815 - Fax: +210 6544592 P.O. BOX 60037, 15310 Ag. Paraskevi, Graece						

Central Offices: Kalavriton 4, 145 64 kifisia, Athens, Tel: +301 6233493-4 , Fax: +301 6233495, http://www.dqshellas.gr, e-mail: ioannisalexiou@dqshellas.gr

Annex to Solar Keymark Certific	Licence Number Issued					SKM 10093.2										
Supplementary Information						2020-09-10										
Annual collector output in kWh/co	llector	at mea	n fluid	l tempe	erature	. n										
Standard Locations		Athens			Davos	m	St	ockhol	m	V	Vürzbur	σ				
Collector name	25°C 50°C 75°C		25°C 50°C			50°C			50°C							
PRISMA 2.0	2,393	1,723	1,068	1,845	1,248	714	1,355	878	492	1,470	947	522				
PRISMA 2.5	2,991	2,154	1,335	2,306	1,560	893	1,694	1,097	615	1,837	1,184	652				
Annual output per m² gross area	1,197	862	534	923	624	357	677	439	246	735	474	261				
Annual efficiency, η_a	68%	49%	30%	57%	38%	22%	58%	38%	21%	59%	38%	21%				
Fixed or tracking collector	5575	.570					5°; roun				50/0					
Annual irradiation on collector plane	176	55 kWh,	/m²	1630 kWh/m²			1166 kWh/m²			1244 kWh/m²						
Mean annual ambient air temperature		18.5°C			3.2°C			7.5°C		9.0°C						
Collector orientation or tracking mode		outh, 25		South, 30° South, 4.												
The collector is operated at constant te																
collector performance is performed with			•	•					5.1 (Sep	tember	2019). A	4				
detailed description of the calculations	is availa						narknew	/								
		Add	ditiona	al Infor	matio	n										
Collector heat transfer medium										Water-						
The collector is deemed to be suitable for	or roof i	ntegrat	ion							N	0					
The collector was tested successfully un	dor the	followir	ar cond	itions:												
Climate class (A+, A, B or C)	der tile	TOHOWII	ig cond	itions.						Ą	_	_				
$G(W/m^2) > 1000$	ϑ_{z}	(°C) >			20			H _x (M.	I/m²) >		60	00				
wimum tested positive load										3000		а				
waximum tested negative load										000	Р	а				
Hail resistance using steel ball (maximum drop height)									2 m			n				
				lector												
Using external power source(s) fo			tion					re(s) fo	r self-pi	rotection	1					
Co-generating thermal and electric						collecto			a Task	nical D	\a+a					
Energy Labelling Infor			. , 2,									, 2,				
Reference Area			A _{sol} (m ⁻)	Hydraulic Designation Code 12-VH-1234S-A:7.2,1525-					Aperature Area, A _a (m ²) 1.91							
DDICNAA 2 O				1.	2 1/11 12	J 2 4 C V .	7 7 1 5 7 5			1.3	7 I					
PRISMA 2.0		2.01					•					2.39				
PRISMA 2.0 PRISMA 2.5		2.50					7.2,1525 7.2,1920									
							•									
							•									
							•									
							•									
							•									
PRISMA 2.5		2.50		1.	2-VH-12	234S-A:	7.2,1920)-		2.:	39					
PRISMA 2.5 Data required for CDR (EU) No 811/201	3 - Refe	2.50	Area	1 Data re	2-VH-12	234S-A:	7.2,1920)-		2.:	39	A _{sol}				
	l3 - Refe	2.50	Area	Data re	2-VH-12	for CDF	7.2,1920 R (EU) No)-	0.	eferenc	e Area A	-				
PRISMA 2.5 Data required for CDR (EU) No 811/201 Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defined	d in CDR	2.50 erence A 60% (EU) No	Area	Data re Zero-lo First-on	equired ss effici	for CDF ency (η	7.2,1920 R (EU) No.000 (a ₁))-	0. 2.	eferenc 76	e Area A	- m²K)				
PRISMA 2.5 Data required for CDR (EU) No 811/201 Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defined 811/2013 as collector efficiency of the solar	d in CDR collector	2.50 erence A 60% (EU) No at a	Area	Data re Zero-lo First-or Second	equired ss effici der coe -order	for CDF ency (η _c efficient coefficie	R (EU) No. (a ₁) (a ₁) ent (a ₂)	o 812/7	0. 2. 0.0	eferenc 76 99 027	e Area A	- m²K)				
PRISMA 2.5 Data required for CDR (EU) No 811/201 Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defined 811/2013 as collector efficiency of the solar temperature difference between the solar co	d in CDR collector	2.50 Perence A 60% (EU) No at a nd the		Data re Zero-lo First-on Second Inciden	equired ss effici der coe l-order ice angl	for CDF ency (ŋ,	R (EU) No. 0) (a ₁) ent (a ₂) ier IAM	o 812/2	0. 2. 0.0 0.	eferenc 76	e Area A	- m²K) n²K²) -				
PRISMA 2.5 Data required for CDR (EU) No 811/201 Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defined 811/2013 as collector efficiency of the solar temperature difference between the solar cosurrounding air of 40 K and a global solar irra	d in CDR collector ollector a adiance o	2.50 Perence A 60% (EU) No at a nd the f 1000 V	V/m²,	Data re Zero-lo First-or Second Inciden	equired ss effici der coe l-order ce angl	for CDF ency (n efficient coefficie e modifi	R (EU) No. (a ₁) ent (a ₂) ier IAM in this sec	0 812/2 (50°)	0. 2. 0.0 0. related	eferenc 76 99 027	e Area / - W/(r W/(n 	n ² K) n ² K ²) -				
PRISMA 2.5 Data required for CDR (EU) No 811/201 Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defined 811/2013 as collector efficiency of the solar comperature difference between the solar consurrounding air of 40 K and a global solar irracexpressed in % and rounded to the nearest in the regulation ηcol is based on reference are	d in CDR collector a bllector a adiance conteger. D a (Asol) v	2.50 erence A 60% (EU) No at a nd the f 1000 V eviating which is	V/m², from	Data re Zero-lo First-or Second Inciden Remark area (A gross ar	equired ss effici der coe -order ce angl : The dat soi) whice ea for IS	for CDF ency (n efficient coefficie e modifi ta given h is apera O 9806.	R (EU) No. a_1 (a ₁) lent (a ₂) ier IAM in this secture area Consister	(50°) tion are for valuat data s	0. 2. 0.0 0. related res accorrets for each	eferenc 76 99 027 91 to collect ding to E	e Area / - W/(r W/(n - or refere N 12975 rture or g	m ² K) n ² K ²) - ence -2 or gross				
PRISMA 2.5 Data required for CDR (EU) No 811/201 Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defined 811/2013 as collector efficiency of the solar comperature difference between the solar consurrounding air of 40 K and a global solar irraexpressed in % and rounded to the nearest ir	d in CDR collector a bllector a adiance conteger. D a (Asol) v	2.50 erence A 60% (EU) No at a nd the f 1000 V eviating which is	V/m², from ea for	Data re Zero-lo First-or Second Inciden Remark area (A gross ar	equired ss effici der coe -order ce angl : The dat soi) whice ea for IS n be used	for CDF ency (n efficient coefficie e modifi ta given th is apert O 9806. d in calcu	R (EU) No. a_1 (a ₁) lent (a ₂) ier IAM in this secture area Consister	(50°) tion are for valuat data s	0. 2. 0.0 0. related res accorrets for each	eferenc 76 99 027 91 to collect ding to E	e Area / - W/(r W/(n - or refere N 12975 rture or g	m ² K) m ² K ²) - ence -2 or				