

Page 1/2

Annex to Solar Keymark Certificate							e Numb	er	SKM 10112.1					
							Date issued			2022-07-26				
							by		DQS Hellas					
Licence holder							ry Greece							
Brand (optional)	Web						www.papaemmanouel.gr							
Street, Number	10 Km Inofyta – St. Thomas, Inofyta						exports@papaemmanouel.gr							
Postcode, City	32011, Viotia					Tel	+30 22620 31931							
Collector Type							Flat plate collector							
						Power output per collector								
		A _G)	_		١	Gb = 850 W/m2, Gd = 150 W/m2 & u = 1.3 m/s								
Collector name		Gross area (A _G)	Gross length	Gross	Gross height	ϑ_{m} - ϑ_{a}								
						0 K	10 K	30 K	50 K	70 K	82 K			
		m²	mm	mm	mm	W	W	W	W	W	W			
OLC200		2.00	1,980	1,010	85	1,367	1,277	1,089	890	680	545			
						<u> </u>								
Power output per m ² gross area						683	639	545	445	340	273			
Performance parameters test met		Steady s	tate - out	door										
Performance parameters (related	to A _G)	η0, b	a1	a2	a3	a4	a5	a6	a7	a8	Kd			
Units		-	W/(m²K)	$W/(m^2K^2)$	J/(m³K)	-	J/(m²K)	s/m	W/(m²K⁴)	W/(m²K⁴)	-			
Test results		0.692	4.42	0.007	0.000	0.00	13,170	0.000	0.00	0.0E+00	0.92			
Incidence angle modifier test metl	nod		Steady s	tate - out	door									
Incidence angle modifier		Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°			
Transversal		K _{θT,coll}	1.00	1.00	1.00	0.99	0.96	0.90	0.77	0.52	0.00			
Longitudinal		K _{θL,coll}	1.00	1.00	1.00	0.99	0.96	0.90	0.77	0.52	0.00			
		- - O L,COII					Water			2.32				
Heat transfer medium for testing														
Flow rate for testing (per gross area, A _G) Maximum temperature difference during thermal performance test							$(\vartheta_{\rm m} - \vartheta_{\rm a})_{\rm n}$		0.020 kg/(sm²)					
Standard stagnation temperature							ϑ_{stg}	nax	178	52.24 K 178 °C				
Maximum operating temperature	(3 - 1000	,,	_a – 50 (-,			ϑ_{max_op}		210					
Maximum operating temperature Maximum operating pressure										kPa				
	NICCD D	a ma a lta	- / C-I	0			p _{max,op} - kPa www.solar.demokritos.gr							
Testing laboratory			s / Solar i	& other E	nergy Sys	tem		ar.demo		0				
Test report(s) 4269 DE1 4270 DQ1						Dated		30/06/2 06/08/2						
42/0 DQ1									00/08/2	U				
Comments of testing laborates	<u> </u>						<u> </u>	Vor	6 2 /12 01	20221				
Comments of testing laboratory							I	ver.	6.2 (13.01	2022)				
							NCSD	"DEM	VELTO	en 2				
							N.C.S.R. "DEMOKRITOS" SOLAR ENERGY LABORATOR							
							Tel: +210 6503815 - Fax: +210 6544592 P.O. BOX 60037, 15310 Ag. Paraskevi, Greece							
						P.O. BOX 6	0037, 15310 Ag	. Paraskevi, Gra	ece	Mass				
							l							

Annex to Solar Keymark Certific	Licence Number					Page 2/2 SKM 10112.1							
Supplementary Information	Issued						2022-07-26						
Gross Thermal Yield in kWh/collect	or at m	oan flu	uid tom	noratu	ro 9								
Standard Locations		Athens		peratu	Davos		C	ockhol	m	l v	Viirzhiii		
Collector name ϑ_m		50°C	75°C		50°C	75°C	25°C	50°C	75°C	25°C	Würzburg		
OLC200	_	1,409	823	1,566	987	554	1,166	687	371	1,275	741	394	
							_,						
				-									
				\vdash									
				-									
 				\vdash									
				\vdash									
Gross Thermal Yield per m ² gross area	1,090	704	412	783	494	277	583	344	185	638	370	197	
Annual efficiency, η_a	62%	40%	23%	48%	30%	17%	50%	29%	16%	51%	30%	16%	
Fixed or tracking collector	<u> </u>			ed (slop							00.1		
Annual irradiation on collector plane	1765 kWh/m²			1630 kWh/m²			1166 kWh/m²			1244 kWh/m²			
Mean annual ambient air temperature		18.5°C			3.2°C			7.5°C			9.0°C		
Collector orientation or tracking mode		outh, 25			South, 30°			outh, 4!			South, 35°		
The collector is operated at constant te													
collector performance is performed with description of the calculations is available								ilc ver.	6.2 (13.	01.2022	!). A aeı	:ailea	
description of the calculations is available	ile at iitt						/						
C. III		Aac	litiona	al Infor	matio	n				111-1-4	Ol mala		
Collector heat transfer medium The collector is deemed to be suitable for	or roof i	ntograt	ion								Glycole lo		
THE COHECTOR IS decined to be suitable in	01 1001 1	Hittgrat	1011							11	0		
The collector was tested successfully un	der the	followin	ng cond	litions:									
Climate class (A+, A, B or C)										A			
$G(W/m^2) > 1000$ $\vartheta_a(^{\circ}C) >$					20			H _x (M.	/m²) >			00	
Maximum tested positive load										000		Pa	
Maximum tested negative load Hail resistance using steel ball (maximul	∽ dron l	hoight))00 2		Pa m	
Indil resistance using steer ban (maximum			nal col	llector	attrib	ute(s)						n	
Using external power source(s) for norn		1	No				sure(s) f	or self-	protect	ion		No	
Co-generating thermal and electrical po			No		collect							No	
Energy Labelling Infor		n			Add	itiona	l Infor	mativ	e Tech	nical [ata		
	Reference Area, A _{sol} (m ²)			Hydraulic Designation Code					Aperture Area, A _a (m ²)				
OLC200		2.00		8-V-12	34S-A:1	1,1880	-C:20.6,	1080-D			83		
				1									
				1									
Data required for CDR (EU) No 811/201	L3 - Refe	erence /	Area	Data re	quired	for CDI	R (EU) N	o 812/2	2013 - R	Reference	e Area	A _{sol}	
Collector efficiency (n _{col})		50%			ss effici					68	<u> </u>		
					der coe				4.	42		m²K)	
Remark: Collector efficiency (ncol) is defined in CDR (EU) No				Second-order coefficient (a ₂)						007	W/(r	m²K²)	
811/2013 as collector efficiency of the solar collector at a temperature difference between the solar collector and the surrounding air of 40 K				includence angle injodiner iAW (50)						0.96			
and a global solar irradiance of 1000 W/m², e		_				-					-		
rounded to the nearest integer. Deviating from the regulation ηcol is					area (A _{sol}) which is aperture area for values according to EN 12975-2 <u>or</u> gross area for ISO 9806. Consistent data sets for either aperture or gross								
based on reference area (Asol) which is aperture area for values					area can be used in calculations like in the regulation 811 and 812 and								
according to EN 12975-2 or gross area for ISC) 9806:20	17.		simulati	on progr	ams.							
Central Offices: Kalayriton 4 145 64	laifinin (A de a se a	Tal. 12	0.310.6	222402	4 5	. 20 21		OF 544				