

|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             | F          | age 1/2 |  |  |
|-------------------------------------------------------------------------------------|---------------------|---------------------------------|---------------------|-----------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------|-----------------------------|------------|---------|--|--|
|                                                                                     | Licenc              | e Numb                          | er                  | OEM 10196.1           |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
| Annex to Solar Keymark Cer                                                          | Date issued         |                                 |                     | 2024-01-22            |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
| · · · · ·                                                                           |                     |                                 |                     |                       |              |                                                                                                                                                   | by                                 |                         | DQS Hellas                  |            |         |  |  |
| Licence holder                                                                      | TANC                | REDI SC                         | LAR SY              | STEM                  |              |                                                                                                                                                   | ry ITALIA                          |                         |                             |            |         |  |  |
| Brand (optional)                                                                    | TANCRI              |                                 |                     |                       |              | Web                                                                                                                                               | https://www.tancredisolarsystem.co |                         |                             |            |         |  |  |
| Street, Number                                                                      |                     | PIA , 184 ,                     | / A                 | E-mail                |              | @tancredisolarsystem.com                                                                                                                          |                                    |                         |                             |            |         |  |  |
| Postcode, City                                                                      | 85100 I             | POTENZA                         |                     |                       |              | Tel                                                                                                                                               | +349                               | 6669413                 | 3                           |            |         |  |  |
| Collector Type                                                                      |                     |                                 |                     |                       |              | Flat plat                                                                                                                                         | e collecto                         | r                       |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              | Power output per collector                                                                                                                        |                                    |                         |                             |            |         |  |  |
| Collector name                                                                      |                     | Gross<br>area (A <sub>G</sub> ) | Gross<br>length     | ss<br>Ith             | ss<br>ght    | Gb = 850 W/m2, Gd = 150 W/m2 & u = 1.3 m/s<br>$\vartheta_m - \vartheta_a$                                                                         |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     | Gross<br>" <sup>W</sup> area (  | B Gross<br>B length | um<br>width           | uu<br>Height | ОК                                                                                                                                                | 10 K                               | 30 K                    | 50 K                        | 95 K       |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              | w                                                                                                                                                 | W                                  | W                       | w                           | W          | W       |  |  |
| TAN2504                                                                             |                     | 2.53                            | 2,040               | 1,240                 | 89           | 1,911                                                                                                                                             | 1,831                              | 1,646                   | 1,429                       | 1,181      | 827     |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
| Power output per m <sup>2</sup> gross area                                          |                     |                                 |                     |                       |              | 755                                                                                                                                               | 724                                | 650                     | 565                         | 467        | 327     |  |  |
| Performance parameters test met                                                     | hod                 | Steady s                        | tate - out          | door                  |              |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
| Performance parameters (related                                                     | to A <sub>G</sub> ) | η0, b                           | a1                  | a2                    | a3           | a4                                                                                                                                                | a5                                 | a6                      | a7                          | a8         | Kd      |  |  |
| Units                                                                               |                     | -                               | W/(m²K)             | $W/(m^2K^2)$          | J/(m³K)      | -                                                                                                                                                 | J/(m²K)                            | s/m                     | W/(m²K4)                    | W/(m²K4)   | -       |  |  |
| Test results                                                                        |                     | 0.767                           | 3.03                | 0.016                 | 0.000        | 0.00                                                                                                                                              | 9,597                              | 0.000                   | 0.00                        | 0.0E+00    | 0.90    |  |  |
| Incidence angle modifier test meth                                                  | nod                 |                                 | Steady s            | tate - out            | door         |                                                                                                                                                   |                                    |                         |                             |            |         |  |  |
| Incidence angle modifier                                                            |                     | Angle                           | 10°                 | 20°                   | 30°          | 40°                                                                                                                                               | 50°                                | 60°                     | 70°                         | 80°        | 90°     |  |  |
| Transversal                                                                         |                     | Κ <sub>θT,coll</sub>            | 1.00                | 1.00                  | 0.99         | 0.98                                                                                                                                              | 0.94                               | 0.87                    | 0.73                        | 0.48       | 0.00    |  |  |
| Longitudinal                                                                        |                     | K <sub>θL,coll</sub>            | 1.00                | 1.00                  | 0.99         | 0.98                                                                                                                                              | 0.94                               | 0.87                    | 0.73                        | 0.48       | 0.00    |  |  |
| Heat transfer medium for testing                                                    |                     |                                 |                     |                       |              |                                                                                                                                                   | Water-G                            | lycole                  |                             |            |         |  |  |
| Flow rate for testing (per gross are                                                | a, A <sub>G</sub> ) |                                 |                     |                       |              |                                                                                                                                                   | dm/dt                              |                         | 0.021 kg/(sm <sup>2</sup> ) |            |         |  |  |
| Maximum temperature difference during thermal performance test                      |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    | nax                     | 65 K                        |            |         |  |  |
| Standard stagnation temperature (G = 1000 W/m <sup>2</sup> ; $\vartheta_a$ = 30 °C) |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         | 209                         | 209 °C     |         |  |  |
| Maximum operating temperature                                                       |                     |                                 |                     |                       |              |                                                                                                                                                   | ປີ <sub>max_op</sub>               |                         | 200                         | 00 °C      |         |  |  |
| Maximum operating pressure                                                          |                     |                                 |                     |                       |              |                                                                                                                                                   | p <sub>max,op</sub> 1000 kPa       |                         |                             | kPa        |         |  |  |
| Testing laboratory                                                                  | NCSR "DEMOKRITOS"   |                                 |                     |                       |              |                                                                                                                                                   |                                    | www.solar.demokritos.gr |                             |            |         |  |  |
| Test report(s)                                                                      | 1268 DE2            |                                 |                     |                       |              |                                                                                                                                                   | Dated                              |                         |                             | 19/01/24   |         |  |  |
|                                                                                     | 4402 D              | Q3                              |                     |                       |              |                                                                                                                                                   |                                    |                         | 19/01/2                     | 4          |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    |                         |                             | 2005)      |         |  |  |
| Comments of testing laboratory                                                      |                     |                                 |                     |                       |              |                                                                                                                                                   |                                    | Ver.                    | 6.2 (13.01.                 | 2022)      |         |  |  |
|                                                                                     |                     |                                 |                     |                       |              | N.C.S.R. "D E M O K R I T O S"<br>SOLAR ENERGY LABORATORY<br>Tel: +210 6503815 - Fax: +210 6544592<br>P.O. BOX 60037, 15310 Ag. Paraskevi, Greece |                                    |                         |                             |            |         |  |  |
| Central Offices: Kalavriton 2,                                                      | 145 64              | kifisia, At                     |                     | : +301 62<br>lexiou@d |              | Fax: +30                                                                                                                                          | 1 6233495                          | 5, http://              | /www.dq                     | s.gr, e-ma | nil:    |  |  |



| Annex to Solar K                                                                                                                          | Licence Number                                                                                 |           |          |                                                                                                                                                                            | OEM 10196.1<br>2024-01-22                                               |                   |             |                         |                    |                                        |          |          |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------|-------------|-------------------------|--------------------|----------------------------------------|----------|----------|------------------|
| Supplementary I                                                                                                                           | Issued                                                                                         |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
| Gross Thermal Yie                                                                                                                         | ld in kWh/collect                                                                              | or at m   | iean flu | uid tem                                                                                                                                                                    | peratu                                                                  | re ϑ <sub>m</sub> |             |                         |                    |                                        |          |          |                  |
| Standard Locations Athens                                                                                                                 |                                                                                                |           |          |                                                                                                                                                                            |                                                                         | Davos             |             | S                       | tockhol            | m                                      | \        | Nürzbuı  | g                |
| Collector name                                                                                                                            | ϑ <sub>m</sub>                                                                                 | 25°C      | 50°C     | 75°C                                                                                                                                                                       | 25°C                                                                    | 50°C              | 75°C        | 25°C                    | 50°C               | 75°C                                   | 25°C     | 50°C     | 75°C             |
| TAN 2504                                                                                                                                  |                                                                                                | 3,067     | 2,273    | 1,537                                                                                                                                                                      | 2,387                                                                   | 1,704             | 1,105       | 1,746                   | 1,186              | 741                                    | 1,894    | 1,283    | 789              |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          | _                                                                                                                                                                          |                                                                         |                   |             |                         |                    | _                                      |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    | _                                      |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
| Crease Theorem 1500                                                                                                                       |                                                                                                | 1.242     | 000      | 600                                                                                                                                                                        | 0.42                                                                    | <b>C</b> 7.       | 427         |                         | 400                | 202                                    | 740      | 507      | 242              |
| Gross Thermal Yield<br>Annual efficiency, η <sub>a</sub>                                                                                  |                                                                                                | 1,212     | 898      | 608                                                                                                                                                                        | 943                                                                     | 674               | 437         | 690                     | 469                | 293                                    | 749      | 507      | 312              |
| Fixed or tracking coll                                                                                                                    |                                                                                                | 69%       | 51%      | 34%<br>Fix                                                                                                                                                                 | 58%<br>ed (slor                                                         | 41%<br>e = lati   | 27%         | 59%                     | 40%                | 25%<br>nearest                         | 60%      | 41%      | 25%              |
|                                                                                                                                           |                                                                                                | 17        | 65 kWh   |                                                                                                                                                                            | ted (slope = latitude - 1<br>1630 kWh/m <sup>2</sup>                    |                   |             | 1166 kWh/m <sup>2</sup> |                    |                                        |          |          |                  |
|                                                                                                                                           | Annual irradiation on collector plane 1765 kWh/m²   Mean annual ambient air temperature 18.5°C |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         | 7.5°C              |                                        | 12       | 9.0°C    |                  |
| Collector orientation                                                                                                                     |                                                                                                | S         | outh, 2  | 5°                                                                                                                                                                         | S                                                                       | outh, 3           | 0°          | S                       | outh, 4            | 5°                                     | S        | outh, 3  | 5°               |
| The collector is opera                                                                                                                    | -                                                                                              |           | ,        |                                                                                                                                                                            |                                                                         |                   |             |                         | ,                  |                                        |          |          |                  |
| collector performanc                                                                                                                      |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
| description of the ca                                                                                                                     | lculations is availab                                                                          | le at ht  | tp://ww  | /w.estif                                                                                                                                                                   | .org/sol                                                                | arkeym            | arknew      | /                       |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           | Ado      | litiona                                                                                                                                                                    | al Infoi                                                                | matic             | n           |                         |                    |                                        |          |          |                  |
| Collector heat transf                                                                                                                     | er medium                                                                                      |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        | Water-   | Glycole  |                  |
| The collector is deem                                                                                                                     |                                                                                                | or roof i | integrat | ion                                                                                                                                                                        |                                                                         |                   |             |                         |                    |                                        |          | 10       |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
| The collector was tes                                                                                                                     |                                                                                                | der the   | followi  | ng cond                                                                                                                                                                    | litions:                                                                |                   |             |                         |                    |                                        |          |          |                  |
| Climate class (A+, A,                                                                                                                     |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             | -                       |                    |                                        | A        | -        | -                |
| G (W/m <sup>2</sup> ) >                                                                                                                   | 1000                                                                                           | θ,        | , (°C) > |                                                                                                                                                                            |                                                                         | 20                |             |                         | H <sub>x</sub> (MJ | /m²) >                                 |          |          | 00               |
| Maximum tested pos                                                                                                                        |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        | 000      |          | а                |
| Maximum tested neg<br>Hail resistance using                                                                                               |                                                                                                | m dron    | hoight)  |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        | 000<br>2 |          | a                |
| Hall resistance using                                                                                                                     |                                                                                                |           | dditio   |                                                                                                                                                                            | lector                                                                  | attrib            | uto(s)      |                         |                    |                                        | 2        |          | n                |
| Using external powe                                                                                                                       | r source(s) for norm                                                                           |           |          |                                                                                                                                                                            |                                                                         |                   | ive mea     | sure(s)                 | for self-          | protect                                | ion      |          | No               |
| Co-generating therm                                                                                                                       |                                                                                                |           | ation    | No                                                                                                                                                                         |                                                                         | •                 |             | 541 C(5)                | or sen             | protect                                |          |          | No               |
|                                                                                                                                           | / Labelling Infor                                                                              |           | n        |                                                                                                                                                                            | Façade collector(s)<br>Additional Informative Technical                 |                   |             |                         |                    |                                        |          | Data     |                  |
| Reference Area, A <sub>sol</sub> (m <sup>2</sup> )                                                                                        |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    | Aperture Area, $A_a$ (m <sup>2</sup> ) |          |          |                  |
| TAN 2504                                                                                                                                  | 2.53                                                                                           |           |          | 15-VH-1234S-A:7,193                                                                                                                                                        |                                                                         |                   |             |                         |                    | 2.32                                   |          |          |                  |
| 17 11 230 1                                                                                                                               |                                                                                                |           | 2.55     |                                                                                                                                                                            |                                                                         |                   | ,           |                         | -,                 |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
| Data required for CD                                                                                                                      | DR (EU) No 811/201                                                                             | 13 - Ref  | erence   | Area                                                                                                                                                                       | Data re                                                                 | equired           | for CDI     | R (EU) N                | lo 812/2           | 2013 - F                               | Referen  | ce Area  | A <sub>sol</sub> |
| Collector efficiency (                                                                                                                    | η <sub>col</sub> )                                                                             |           | 61%      |                                                                                                                                                                            |                                                                         |                   | iency (η    | <b>·</b> ·              |                    | 0.                                     | .76      | -        | -                |
|                                                                                                                                           |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   | efficient   |                         |                    |                                        | .03      | W/(      |                  |
| Remark: Collector efficiency (ncol) is defined in CDR (EU) No<br>811/2013 as collector efficiency of the solar collector at a temperature |                                                                                                |           |          |                                                                                                                                                                            | Second-order coefficient ( $a_2$ ) 0.016 W/(n                           |                   |             |                         |                    |                                        |          | n²K²)    |                  |
| difference between the solar collector and the surrounding air of 40 K                                                                    |                                                                                                |           |          |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
| and a global solar irradi                                                                                                                 |                                                                                                |           | -        |                                                                                                                                                                            |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
| rounded to the nearest integer. Deviating from the regulation $\eta$ col is                                                               |                                                                                                |           |          | area (A <sub>sol</sub> ) which is aperture area for values according to EN 12975-2 <u>or</u><br>gross area for ISO 9806. Consistent data sets for either aperture or gross |                                                                         |                   |             |                         |                    |                                        |          |          |                  |
| based on reference area (Asol) which is aperture area for values                                                                          |                                                                                                |           |          |                                                                                                                                                                            | area can be used in calculations like in the regulation 811 and 812 and |                   |             |                         |                    |                                        |          |          |                  |
| according to EN 12975-2 or gross area for ISO 9806:2017.                                                                                  |                                                                                                |           |          |                                                                                                                                                                            | simulation programs.                                                    |                   |             |                         |                    |                                        |          |          |                  |
| Central Offices: K                                                                                                                        | alavriton 2, 145 64                                                                            | kificia   | Athens   | Tel· ±2                                                                                                                                                                    | 01 672                                                                  | 3493_/            | Fax. +3     | 801 672                 | 3495 h             | ttn·//w                                | ww.da    | s.gr o_n | nail·            |
| central Offices. K                                                                                                                        |                                                                                                |           | , ((16)) |                                                                                                                                                                            | iou@dq                                                                  |                   | , . u.x. ra |                         | J-JJ, 11           | p.//w                                  |          | -ы, с-п  |                  |
|                                                                                                                                           |                                                                                                |           |          | CAI                                                                                                                                                                        |                                                                         | - '8'             |             |                         |                    |                                        |          |          |                  |